A Systems Perspective for Assessing Carbon Dioxide Capture and Storage Opportunities

Third Annual Conference on Carbon Sequestration May 5, 2004

Nisheeth Singh and Howard Herzog Laboratory for Energy and Environment, MIT

Geographic Information Systems

- Geographic Information System (GIS)
 - Tool to model, analyze and visualize spatial relationships between data
 - Composed of computer programs, data, and personnel
 - Increasingly used in areas of spatial analysis

MIT's Carbon Management GIS

- Overall Project Objectives
 - Integrate information from diverse sources
 - Conduct systems analysis and modeling
 - Inform and support policy decisions
- Data
 - Technical data
 - » CO₂ infrastructure (sources, sinks, transport)
 - » Topography (elevation, rivers, land type)
 - Political data (demographics, sensitive areas)
 - Economic data (cost algorithms)
 - Regulatory data (permitting)

Project Objective

To develop a systems framework to analyze and evaluate geologic sequestration options

Approach

- Characterize CO₂ Sources
- Characterize Storage Reservoirs
- Match CO₂ Sources to Storage Reservoirs
- Systems Analysis

Characterize CO₂ Sources

- Key CO₂ Sources
 - Fossil fuel-fired power plants
 - Industrial processes
- Outputs for Systems Analysis to GIS
 - Costs
 - CO₂ Quantity
 - CO₂ Quality

Characterize CO₂ Sources

- Major Parameters
 - CO₂ flow rates
 - CO₂ purity
 - CO₂ Pressure
 - "Retrofit parameters", e.g., fuel, process, physical layout
- Levels of analyses
 - Current Costs for generic plants or user input
 - Future Case-by-case analysis
 - » Depends on availability of detailed data
 - » Depends on availability of appropriate algorithms

Characterize CO₂ Reservoirs

- Key CO₂ Reservoirs
 - Oil and gas reservoirs
 - Unmineable coal seams
 - Deep saline formations
- Outputs for Systems Analysis to GIS
 - Costs
 - Capacity
 - Special Requirements (e.g., purity)
 - Future regulatory/political requirements

Characterize CO₂ Reservoirs

- Major Parameters
 - Porosity
 - Depth
 - Pressure
 - Permeability
 - Thickness
 - "Containment parameters"
- Levels of analyses
 - Desired calculations based on actual data
 - Alternate 1 Extrapolate "play" data
 - Alternate 2 Use default data

Match CO₂ Sources to Storage Reservoirs

- Consider only pipelines
 - Straight line path
 - Consider topography, population centers, etc.
 - Follow existing rights of way (e.g., power lines, gas pipelines, railroads)

Systems Analysis

- Key parameters
 - Cost
 - Capacity
 - Regulatory/Political
- System Options
 - Best storage reservoir for a single CO₂ source
 - Design for multiple CO₂ sources/ storage reservoirs
 - Optimization for multiple CO₂ sources/ storage reservoirs

Case Study

Topography

Best storage reservoir for a single CO₂ source

Design for multiple CO₂ sources/ storage reservoirs

Design for multiple CO₂ sources/ storage reservoirs

Conclusions and Recommendations

- GIS is a promising tool to conduct systems analyses for carbon capture and storage opportunities
- Biggest need is for better data both depth and breadth (hopefully the Regional Partnerships and NATCARB will help here)
- Work is continuing to develop more detailed algorithms for evaluation & optimization

Acknowledgement

- Special thanks to DOE and NETL for their sponsorship of this work.
- Also thanks to Henry Zhang for implementing the approaches discussed in this paper.
- Further information about the MIT Program on Carbon Capture and Storage can be found at <sequestration.mit.edu>